<i>C</i>-normality of rank-one perturbations of normal operators

نویسندگان

چکیده

For a separable complex Hilbert space H, we say that bounded linear operator T acting on H is C-normal, where C conjugation if it satisfies CT∗TC=TT∗. normal operator, give geometric conditions which guarantee its rank-one perturbation C-normal for some C. We also obtain new properties revealing the structure of operators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

On Rank One H−3-Perturbations of Positive Self–adjoint Operators

Rank one H−3 perturbations of positive self–adjoint operators are constructed using a certain extended Hilbert space and regularization procedures. Applications to Schrödinger operators with point interactions are discussed.

متن کامل

Rank One Perturbations with Infinitesimal Coupling

We consider a positive self-adjoint operator A and formal rank one pertubrations

متن کامل

Bounded Rank-one Perturbations in Sampling Theory

Sampling theory concerns the problem of reconstruction of functions from the knowledge of their values at some discrete set of points. In this paper we derive an orthogonal sampling theory and associated Lagrange interpolation formulae from a family of bounded rank-one perturbations of a self-adjoint operator that has only discrete spectrum of multiplicity one. Mathematics Subject Classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2022

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2022.2105289